SDC11556

General Description

The SDC11556 is a single phase DC fan motor driver IC. It is optimal for use in applications that require miniaturization and low noise. The driver includes lock detection, thermal shutdown and over-current protection. Maximum output current is 1A. Package is Pb-free and Halogen-free.

Features

- Operation voltage: 2.0V~6.0V
- Lock detection
- Control output terminal(FG)
- Built-in thermal shutdown circuit
- Over current protection
- Low cross-over noise

Application

■ Single phase DC fan motor

Pin Configuration

MSOP-8

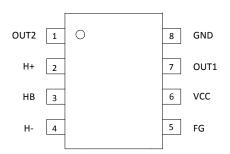


Figure 1. Pin Configuration

Pin Number	Pin Name	Function		
1	OUT2	Motor output terminal		
2	H+	Hall input terminal		
3	НВ	Hall bias		
4	H-	Hall input terminal		
5	FG	FG signal output terminal		
6	VCC	Power supply terminal		
7	OUT1	Motor output terminal		
8	GND	Ground terminal		

Table 1. Pin Description

SDC11556

Functional Block Diagram

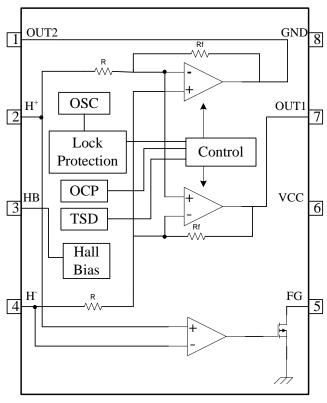
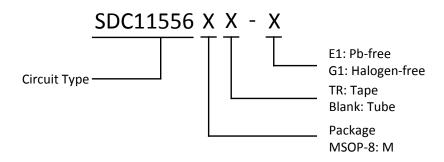



Figure 2. Functional Block Diagram

Ordering Information

Package	Temperature Range	Part N	Mar	Packing		
MSOP-8	-40°C~85°C	Pb-free	Halogen-free	Pb-free Halogen-free		Туре
		SDC11556MTR-E1	SDC11556MTR-G1	1556	1556G	Tape
		SDC11556M-E1	SDC11556M-G1	1556	1556G	Tube

January, 2013 Rev. 1.0

SDC11556

Absolute Maximum Ratings (Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device.)

Parameter	Symbol	Min	Max	Unit
Maximum supply voltage	V _{CCMAX}	-	7	V
Maximum output current	I _{OUTMAX}	-	1000	mA
FG signal maximum output current	I _{FGMAX}	-	10	mA
FG signal maximum output voltage	V_{FGMAX}	-	7	V
HB maximum output current	I _{HBMAX}	-	10	mA
Power dissipation	Pd _{MAX1}	-	585	mW
Operate temperature range	T _{OPR}	-40	105	°C
Storage temperature range	T _{STG}	-55	150	°C
Junction temperature range	T _{JMAX}	-	150	°C

Table 2. Absolute Maximum Ratings

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating supply voltage range	V _{cc}	2.0	6.0	٧
Hall input voltage range	V _H	0.4	V _{cc} -1.3	V

Table 3. Recommended Operating Conditions

Electrical Characteristics (Ta=25°C, V_{CC}=5V, unless otherwise specified)

Parameter	Symab al	Limit			Linit	Conditions	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Supply current	I _{cc}	-	3	6	mA	-	
		Hal	l Input				
Input offset voltage	V_{HOFS}	-	-	±6	mV	-	
		O	utput				
Output voltage	Vo	-	0.3	0.5	V	I _o =250mA Upper and lower total	
Input-output gain	G _{IO}	45	48	51	dB		
FG low voltage	V_{FGL}	-	0.2	0.3	V	I _{FG} =3mA	
FG leakage current	I _{FGL}	-	-	10.0	uA	V _{FG} =5V	
Input hysteresis voltage	V_{HYS}	±5	±10	±15	mV		
Hall bias voltage	V _{HB}	1.1	1.3	1.5	V	I _{HB} =-5mA	
Lock Protection							
Lock detection on time	t _{on}	0.35	0.50	0.65	Sec	-	
Lock detection off time	t _{OFF}	3.5	5.0	6.5	Sec	-	

Table 4. Electrical Characteristics

SDC11556

Truth Table

H+	H-	OUT1	OUT2	FG	Mode	
Н	L	Н	L	L(Output Tr : ON)	Operation mode	
L	Н	L	Н	Z(Output Tr : OFF)		
Н	L	L	L	L(Output Tr : ON)	Lockmodo	
L	Н	L	L	Z(Output Tr : OFF)	Lock mode	

Table 5. Truth Table

Power Dissipation Curve

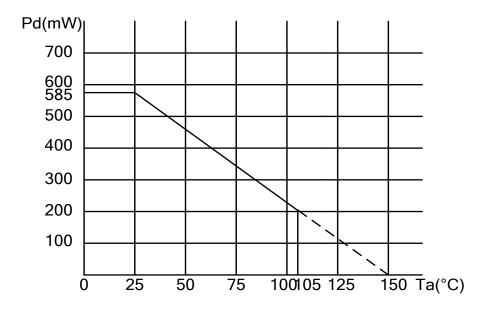


Figure 3. Power Dissipation Curve

SDC11556

Typical Application

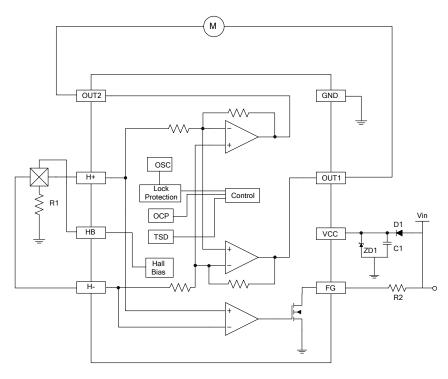


Figure 4. Typical Application

Reverse connection of power supply may break the device. A countermeasure is needed such as using reverse current protection diode (D1) between power supply and VCC terminal

The BEMF causes re-circulate current to power supply, when power-on or output changes. It may cause VCC terminal to raise voltage, especially using reverse current protection diode (D1) because of there is no way to

return current to power supply. In such case, please take necessary measures like below.

Connect a zener diode (ZD1) between VCC and GND terminal not to exceed the absolute maximum rating voltage.

Connect a capacitor (C1) between VCC and GND terminal to make the path of return current to power supply.

SDC11556

Lock Detection

This IC detect the rotation of the motor by hall signal, and adjust lock detection ON time (Ton) and lock detection OFF time (t_{OFF}) by the internal counter. These time (t_{ON}, t_{OFF}) are showed below.

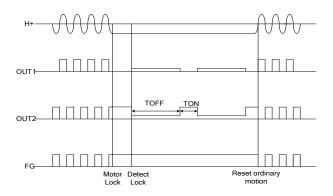


Figure 5. Lock Detection

Note:

1. Absolute Maximum Ratings

This product is produced with strict quality control, but destroyed in using beyond absolute maximum ratings. Once IC destroyed, a failure mode cannot be defined (like short-mode or open-mode). Therefore, physical security counter measure, like fuse, is to be given when a specific mode to be beyond absolute maximum rating is considered.

2. Reverse Connection of Power Supply

Reverse connection of the power supply may break the device. A countermeasure is needed such as using reverse current protection diodes between the power supply and the VCC terminal.

3. Power Supply Line

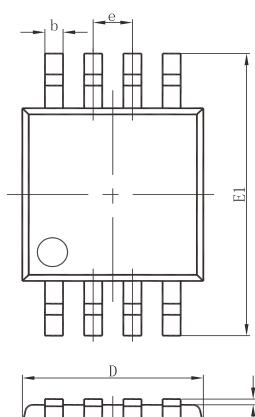
The BEMF causes re-circulate current to power supply, Please connect a capacitor between power supply and GND as a route of re-circulate current. And please determine the capacitance after confirmation that the capacitance does not causes any problems.

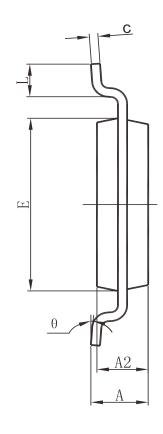
4、GND Potential

The GND terminal should be the location of the lowest voltage on the chip.

5 Thermal Design

The thermal design should allow enough margin for actual power dissipation.


6. Mounting Failures


Mounting failures, such as misdirection or miss-mounts, may destroy the device.

The electrical short caused by falling particle, between outputs; power supply and output; or output and ground, may damage the device.

SDC11556

Package Dimension MSOP-8

Chal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
e	0.650	(BSC)	0.026	(BSC)	
E1	4.750	5.050	0.187	0.199	
E	2.900	3.100	0.114	0.122	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

SDC11556

Shaoxing Devechip Microelectronics Co., Ltd.

http://www.sdc-semi.com/

IMPORTANT NOTICE

Information in this document is provided solely in connection with Shaoxing Devechip Microelectronics Co., Ltd. (abbr. SDC) products. SDC reserves the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice. SDC does not assume any responsibility for use of any its products for any particular purpose, nor does SDC assume any liability arising out of the application or use of any its products or circuits. SDC does not convey any license under its patent rights or other rights nor the rights of others.

© 2013 Devechip Microelectronics - All rights reserved

Contact us:

Headquarters of Shaoxing Shenzhen Branch

Address: Tian Mu Road, No13, Address: 22A, Shangbu building, Nan Yuan Road, No.68,
Shaoxing city, Zhejiang province, China Futian District, Shenzhen city, Guangdong province, China

Zip code: 312000 Zip code: 518031

Tel: (86) 0575-8861 6750 Tel: (86) 0755-8366 1155
Fax: (86) 0575-8862 2882 Fax: (86) 0755-8301 8528